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Abstract—In the past, fingerprinting algorithms have
been suggested as a practical and cost-effective means for
deploying localisation services. Previous research, however,
often assumes an (idealised) laboratory environment rather
than a realistic set-up. In our work we analyse chal-
lenges occurring from a university environment which is
characterised by hundreds of access points deployed and
by heterogeneous mobile handsets of unknown technical
specifications and quality. Our main emphasis lies on
classification results for room detection. We analyse the
problems caused by the huge number of access points
available and by the heterogenous handsets. We show that
standard techniques well-known in machine learning such
as feature selection and dimensionality reduction do work.
We also provide evidence that pre-processing techniques
suggested previously in a laboratory set-up do not improve
accuracy.

I. INTRODUCTION

In this paper we describe results in deploying a lo-
calisation service in a university setting based on a fin-
gerprinting approach. Although fingerprinting has been
proposed in the past as a low-cost and effective approach
to localisation services as it requires no special hardware
to deploy, the theoretical analysis and experimental inves-
tigation of indoor localisation techniques which use RSS
(Received Signal Strength) fingerprinting usually ignore
the difficult impact of real-life environments different
from the idealised laboratory set-up. In this paper we ad-
dress three of these effects. First, instead of dealing with
only a few selected and controlled access points we have
to deal with hundreds of them. Secondly, this implies
that one has to consider the impact of non-visible access
points. And last but not least, an effective localisation
service at a university has to cope with a great variety
of mobile handsets the technical specifications of which
are not known and cannot be determined with sensible
effort. Note, that this aggravates the second problem
as different handsets see different access points due to

different antenna or chip sensitivity. The total effect of
high density of access points on localisation accuracy is
not fully understood and investigated in the sequel.

A. Overview of Localisation Techniques

Indoor localisation based on WiFi has long been
analysed and studied, for a general overview we refer to
[1]. Techniques can make use of a theoretical propagation
model or can be based on empirical signal strength only.
Although a theoretical underpinning with a propagation
model sounds attractive from first principles, in reality
it is impracticable as in real indoor environments it
is very difficult to understand the propagation model
from a theoretical perspective and close to impossible to
effectively measure all the relevant characteristics as this
measurement process is associated with prohibitive costs.
Thus, simple models based on empirical signal strength,
i.e. fingerprinting, are usually preferred.

B. Project MoCa

In 2012 at Frankfurt University of Applied Sciences
the project MoCa (Mobile Campus Applications) was
launched. Its mission is to provide personalised, context-
sensitive services to students (and university staff) based
on individual and role-based requirements. As the current
position provides important context information for many
services such as lecture and seminar support including
voting services or social network services such as “find-
your-buddy” applications, a localisation service is a core
component of the MoCa infrastructure. Due to resource
constraints, one of the key requirements of the project
is zero maintenance which tries to minimise any main-
tenance efforts. Henceforth, any time-consuming efforts
such as e.g. calibration must be avoided. Rather, we try to
make use of crowd-sourcing techniques to facilitate the
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data generation (training) process. For a comprehensive
overview of the MoCa vision we refer to [2].

II. EXPERIMENTAL SETUP
A. Procedure

Data was collected at three floors in a building of
the department of computer science and engineering,
including altogether nine rooms of typical seminar and
lecture room size (from 38 m? to 89 m?; the layout
is available upon request). In each room on average 53
reference locations were evenly spaced in a cartesian
grid for tachymetric measurement. At each position,
fingerprinting data was collected from 118 access points
— most of which are not mutually visible at any single
location. The (raw) measurements were recorded by an
application on each handset and send to a central server.

B. Handsets

Training data was recorded using three different hand-
sets as depicted in table I to model (proxy) for the
heterogeneous clients to be expected in a production
system. We refer to data generated by these clients as
fpl, fp2, and fp3 in the sequel.

OEM Model MAC-Address Data
Sony Xperia S 30:39:26:0a:d2:cc fpl
HTC One X 1c:b0:94:b5:26:ea  fp2
Samsung  N700 50:cc:f8:1e:0c:d1 fp3

TABLE I: Mobile Handsets

ITI. ALGORITHMS
A. Data Cleansing and NAs

Before using any data for machine learning, cleans-
ing procedures are necessary to remove e.g. outliers.
Checking revealed one missing data point which could be
interpolated from its neighbours. Afterwards, several data
transformations were applied as described in the next sec-
tion. As the data contains a large number of missing, i.e.
NA values due to missing RSS values of non observable
access points — a result of the low signal strength below
perception threshold at any particular location — these
NAs have to be replaced with proper default values prior
to applying machine learning algorithms such as KNN,
SVM or PCA. For the raw data, most devices deliver
RSS values down to ~ —100 dBm, thus it seems to be
reasonable to replace NA values with a default of —100
dBm. However, we consider this replacement part of the
training phase of the learning algorithm and henceforth
experimentally picked the optimal value. Furthermore,
one has to carefully adjust the value for the default as the
data distribution changes (mean and minimum values).
Also, it has to be considered whether to first replace the
NAs and then apply the transformations or vice versa as
the operations are not commutative.

B. Data Transformation

It is well known in machine learning that a careful
feature construction and transformation is important for
a good learning result. In the sequel we adopt the
following notation. Let us denote a single fingerprint
by x = (z1,...,2,), Where n denotes the number of
access points. The total of m fingerprints is denoted as
X = (245),4 € 1,...,m, j € 1,...,n using matrix
notation. In the sequel, transformations ® : x — x’ are
applied to the fingerprinting values x. We follow the
usual convention that features are denoted by column-
and measurements are denoted by row-values. Thus,
in the sequel linear transformations are identified with
matrix operations M operating from the right, i.e.
®pr(z) := x"M. (As usual, x' or M denote the
transpose of a vector x or matrix M resp.)

The following transformation algorithms were applied
and are described in the sequel in detail:

1) Calculating the difference between access points —

inspired by [3], we tried the following algorithms:

a) ®,,qr: Subtracting the average of all dis-
tances

b) ®;ppa: Calculating the distance to the
strongest access point

c) ®;ppc: Calculating the distance to the
strongest access point per cell

d) ®y,52: To assess how much information is
contained receiving the signal of an access
point at all, the data was category encoded
into 1 or 0 according to whether or not a
signal was intercepted

2) Projecting all access point to smaller number of

principal components, as suggested in [4].

Differential RSS: It was argued in [5] that taking log-
arithms of the received signal strength measured in dBm
— a technique called “hyperbolic fingerprinting” — could
improve the results of localisation algorithms in the case
of heterogeneous devices as taking the logarithm would
compensate for the different reception of heterogenous
devices. However, as pointed out in [3], the algorithm
proposed lacks a theoretical foundation. Alternatively, in
[3] it was proposed to take differences of RSS values,
so-called SSD, measured in dBm. This procedure has
a theoretical underpinning if one assumes a log normal
shadowing model [6] for the signal distribution.

The SSD vectors are computed as follows

Sijk ‘= Tij — Tik. ey

In [3] it was shown that these s;;; are (in first order)
device independent: Let the ¢’th fingerprints x;; and x4
denote the received signal strength at a given distance
d;- and dj, from access points a; and aj. Then in [3]

the following equation is proven assuming a log normal
shadowing model:
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whereas d}) denotes the i’th distance to an (arbitrarily
chosen) reference access point, and X i X,i denote the
’th received power from access point a; and ay, resp.
(Pap]. is the transmitted power, Gapj the antenna gain,
Aap; the wavelength, and L; the system loss factor for
aj). The crucial observation is that equation 2 is free
from any device dependent parameters and henceforth
more suitable to be used as the input of an classification
or (regression) algorithm. The first term in equation 2
is the same for all access points if they are configured
identically and are of the same model' and is independent
of any influence caused by variations of the handhelds;
for details we refer to [3].

As there exist n(n — 1)/2 different combinations of
access point values, taking differences of signal strength
seems to blow up the input space dimension accordingly.
However, those differences are not linearly independent.
Indeed, taking differences reduces the dimension of the
input space from n to n — 1. However, it is unclear,
which access point to choose as a “reference” access
point. Furthermore, even more importantly in our set-up,
we cannot and should not use the same access point as a
reference access point, as we want to cover a large area
(university campus) and henceforth a single access point
is not even visible at all interesting areas. Henceforth,
we have to pick a different strategy. As we shall see, the
strategies can be fit into a common framework.

For the following exposition it is convenient to denote
the matrix projection operator onto the k-th RSS value in
matrix notation by Iy, i.e. (IT} x) := (2, ..., 7x). We
denote the identity matrix by I, i.e. I;; = d;;, Vi, j, where
d;; denotes the usual Kronecker delta. Note that the SSD
vectors implicitly define a matrix (PE X)ij = Sijk-

Now the following identities hold trivially:

(TLy)ij = Ok Vk,i,j 3)
II.II, =11, Vk,l @
P.,=1-1I, Vk ®))
PP, =P vk, (6)

It follows that taking the SSD values are simple (linear),
but non-orthogonal projection operations P, with a one-
dimensional kernel — the latter can be easily seen by

Tnot untypical for university deployments

directly computing that the unit vectors e; for i # k
and ep := (1,...,1) form a basis of eigenvectors to the
eigenvalues 1 and O resp.

In our work, we propose the following algorithm to
reduce the dimensions: As each individual difference s;;,
is independent from the device characteristics, clearly
any linear combination is so, too. Henceforth, in the
sequel the averaging procedure, ®,.qr : x — X', defined
as follows (with J denoting the all-ones matrix i.e.
Jij = 1, VZ,])

(I)sst = q)Ifﬁ_] (7)

is also independent from the device characteristics.
Then one can compute that?

(q)sst(X))ij = x5 — Z it:lk ®)
k=1
1 n

is true, where n denotes the number of non-NA observa-
tions (access points), i.e. NAs are ignored (stripped out)
if any exist.

(Note, that from equation 9 one immediately sees that
®,.qr can be written as a linear combination of SSDs.
This algorithm collapses all SSDs into one single value
and reduces the dimension accordingly to the maximum
number of independent differences, i.e. to n — 1.)

From simple matrix algebra (using equation 6) it
follows that ®,,4r is a projection operator. It can be

easily computed that the vectors vy := (1,—1,...,0),
vy = (1,0,-1,...,0), ..., vp_1 := (1,...,—1) and
vy, = (1,...,1) form a basis of eigenvectors to the

n — 1 eigenvalues 1 and O resp. Thus, ®s5qr has rank
n — 1 (or co-dimension 1).

As P := &, 4p is symmetric, i.e. PT = P (as can be
directly seen from 7), the projection P is orthogonal, i.e.
every vector x can be written as X = Xp @ Xp. where
xp := Px denotes the projection onto the subspace P
(with xp1 € ker P). It follows trivially, that

Ix —y|* = |Px =Py|” + |xps —ype|*. (10

Henceforth, if two vectors are close to each other in
feature space, they have to be close to each other in
the transformed (Im P) space, too. Note that distances
are smaller in the transformed space, hence, if data
is linearly separable after the transformation it had to
be linearly separable also before®. Henceforth, in the
context of machine learning classification, we can expect

2Recall that linear transformations are identified with matrix opera-
tions from the right!
3Similar arguments can be made for Py, too.



an improvement in the classification results iff the one-
dimensional kernel that is projected out by P contains in-
significant information only (e.g. noise). We also should
aspect that algorithms that “learn” the significant features
automatically from the training data such as SVM shall
not benefit from this transformation if enough training
data is available as the minimising margin hyperplane is
found irrespective of (i.e. ignoring) ker P. As we shall
see later, this intuition is confirmed by our data.

We also take differences to the strongest access point
in the fingerprint, called ®spp 4, and defined as follows:

(1)

((I)fBBA(X)),'j = Tij — mgx{xik},
In addition we compute ®rppc as

{zm},

where xj; € cell(x;;) implies that the fingerprint x,
is taken from the same cell (room or sub-cell, see below)
than ;.

Both algorithms also collapse all SSD into one value
and reduce the dimension accordingly. They can be
thought of picking the “right” access point from the SSD.
As the picking strategy can be computed from the SSD
data alone®, it is clear that those transformations can
be computed from the SSD values alone and henceforth
are device independent (in first order). Note, that neither
®rppa nor ®;ppc is linear. It should be noted that
® ;ppc can only be used for training as in testing phase
we do not know the correct location (cell). For testing,
in this case, we proxy ®;ppc by the ®;pp 4 algorithm.

A preliminary analysis of the transformations based on
collecting test-data was conducted in a bachelor thesis,
see [7].

Binary RSS: The transformation @, is defined as
follows:

(12)

max

& =Ly —
( fBBC(X))z] Tij zprEcell(xij)

1 if Ti5 > —100

13
0 else. (13)

((I)/'P82(x))ij = {
As we shall see below, this binary projection already
contains a lot of location information.

PCA: Based on ideas in [4] a master thesis [8] was
conducted to assess the applicability of principal com-
ponent analysis at the university campus in the context
of WLAN localisation. Principal component analysis
(PCA) is a well-known statistical procedure that linearly
transforms the coordinate system in such a way that pos-
sibly correlated variables are mapped into set of linearly
uncorrelated variables called principal components. The
number of principal components is less than or equal to
the number of original variables. The eigenvalues corre-
sponding to this transformation are sorted in descending

“4Because the definition of the max implies that we always pick the
SSD with minimum total sum.

order such that the first principal component has the
largest possible variance, the second the second largest
and so on. In the context of machine learning, principal
components analysis can be used to reduce the number of
observations and henceforth improve the signal to noise
ration [9]. In our context, it is also important to note
that the reduction of dimensions may lead to significant
performance improvements which could be relevant for
a production system.

C. Performance Measures

For replacing NA values and tuning parameters of clas-
sification algorithms, the standard binary error measure
e is used:

e(x,y) :=1/n Z L(z; # vi),

i=1

(14)

where x and y denote predictions and measurements
resp, n the number of observations and 1 the indicator
function whose value is 1 if its argument is true and 0
otherwise.

For regression, the mean Euclidean distance r is used
as well:

n
r(x,y) =1/n Y Ix—yP (15)
i=1
For classification, several error measures are known
— for a systematic comparison, see [10]. To assess
the performance of our algorithms, we calculate true
positives tp, true negatives tn, false positives fp, and
false negatives fn and compute precision p := —£— and

tp+fp
. Both measures

recall (also called sensitivity) r :=
are important in our context.

As precision and recall are conflicting goals, they can
be combined into a so-called F-measure

.__ (B2+1) tp
f(8) = (B2+1) tp+B2fn+ fp’

where § € (0,00). The F-measure f(2) is the harmonic
mean of precision and recall. The closer the F-measure
is to one the better is the classifier.

For the multi-class classification task, these binary per-
formance measures can be combined into useful multi-
class classification performance measures in several use-
ful ways as explained in [10]. In our case we take a
conservative approach and always choose the minimum
(over all rooms, i.e. binary classification tasks) of either
precision, recall or F-measure in the sequel.

tp
tp+fn

(16)

D. Machine Learning Algorithms

KNN: We have chosen the well-known (deterministic)
K-Nearest Neighbour algorithm KNN [11]. We have used
the R-packages KKNN and FNN as implementations; the
former [12] provides also support for different kernels



and the latter is more performant (using e.g. cover trees
as internal data structures). The latter also provides
access to the indices of the nearest neighbours which
makes it easy to calculate Euclidean distance errors, too.

SVM: Support Vector Machines (SVM) have risen in
the past decade to become a powerful machine learning
tool capable of representing non-linear relationships. In
its simplest form a linear SVM finds the optimal linear
separator, a hyperplane, between the two classes of
data by maximising the so-called margin between the
separating hyperplane and the data. If the data is non-
separable some misclassified data points can be allowed
and controlled by a regularising parameter. For truly non-
linear problems, the data can be mapped to a — potentially
high- (even infinite) dimensional feature space — by the
so-called kernel-trick, for details see [13], [14], and [15].

Although SVMs can be used for regression as our main
interest is in correct classification, we present results on
using SVM mainly for classification tasks. As the data
is (almost) linearly separable, we tried linear kernels’
with good success. For our analysis we have chosen the
R-package e1071°.

Workflow: The subsequent results were computed
based on the following workflow:

1) Apply data cleansing to raw data
2) Split data in training and test set by randomly
splitting available data into training and validation
data or validating against different test data gener-
ated by different device to assess impact of device
heterogeneity
3) (Optional) NA replacement before applying the
data transformations
4) (Optional) data transformation of either of ®,.4r,
Drps2, Prppa, of PrppC
5) If NA replacement has not occurred in step three,
NA replacement
6) Computing optimal NA replacement values from
training data by comparing cross validation results
for nearest neighbour classifications
7) (Optional) apply principal components transforma-
tion (PCA)
8) (Re-) Training with the training set and using
optimal Na values
9) Computing validation (cross validation)
10) Calculating all performance measures

IV. RESULTS

The calculations based on the raw data’ is analysed in
the sequel. Selected results are shown in tables III and
IV and figure 3.

SExperiments with non-linear such as Gaussian kernels did not show
any improvements as was to be expected.

Swhich provides an interface to libsvm

7Tavailable upon request
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Fig. 1: Room Classification — PC1, PC2, and PC3

A. Geometric Structure of the Feature Space

Due to the high dimensionality of the feature space the
data is linearly separable. This can be seen by performing
a PCA and is confirmed using a SVM with linear kernel.
As it turns out, the first two components already allow
for linear separation of floor levels. Taking the first
three components allows for almost linearly separating
all rooms as illustrated in figure 1. This can also be
deduced from computing the cumulative variances of the
first principal components:

PC1
0.47

PC2
0.75

PC3
0.87

PC4
0.93

PC5
0.94

PC6
0.95

PC7
0.95

PC8
0.96

PC9
0.96

As one can see, the first six principal components add
up to more than 95% variance.

The distribution of the pairwise (Euclidean) distance
in feature space (see figure 2) demonstrates a high
variability which implies that the data “lives” on a low-
dimensional subspace of the n-dimensional feature space.

This can be concluded as well from calculating the
correlation dimension C/(¢€) following [16] which is de-
fined as the number of pairs with a distance below a
threshold e divided by the number of pairs as the number
of observations tend to infinity:

C(e) := lim é#ﬂxl —z;| <€}

m—o0 m(m — 1)

7)

The correlation dimension® is a measure of the dimen-
sionality of the sub manifold the random data lives in,

and does not have to be an integer.

8which was first introduced in fractal geometry
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Fig. 2: Pairwise Distance Density

One estimates C'(¢) ~ 3.1 which is compatible with
the PCA analysis and the fact that despite the high
dimensionality of the feature space, KNN and other tech-
niques based on geometric distance work well. Hence-
forth, the “curse of dimensionality” does not apply here.

B. Best NA Values

As typical devices do not record RSS below 100 con-
sidering equations 9, 11, and 12 we expect the following
NA replacement values:

e For ®;gcntity values around or below —100 dBm

e For ®,,4r values around or below —20 dBm

e For ®¢ppa values around or below —60 dBm

e For ®;ppc values around or below —60 dBm

The empirically optimised values are close to these
expected values.

C. Device Heterogeneity

The distribution (e.g. figure 2) also shows that the
individual mobiles have quite different distributions of
RSS values although the data was collected in exactly the
same manner. Applying the ®ypp4 transformation, the
heterogeneity between the different handsets is reduced
and the distributions look more uniform. However, as
can be expected from the theoretical analysis above, this
does not result in a better classification (nor regression)
as we will see below.

Being able to use fingerprinting RSS for localisation
by using machine learning algorithms that learn from
calculating distances in feature space is possible, if and
only if the distance in feature space’ is correlated to

9usually induced by the standard Euclidean L? norm

the spatial distance. For indoor WLAN fingerprinting,
however, this correlation is quite weak — a calculation
reveals that the correlation between spatial pairwise
distances ds and pairwise distances in feature space dy
is only corr(ds,d¢) = 0.336 for raw data (and only
marginally improved if data is transformed by ®,.4).
If instead ®ypp4 is used, the correlation even drops
dramatically to corr(®sppa(ds), Prepalds)) = 0.111.

For the identity transformation and the ®.,y and
®;pp4 transformations we calculated the mean distance
error distribution'® applying the NA replacement before
or after the transformations and could not find any
significant difference.

Note, that in [3] SSD were investigated in a controlled
lab set-up with only a few visible access points and only
a few rooms. We therefore investigated whether SSD
transformations yield improvements in mean distance
error if applied in a more restricted setting. To this
end, we filtered only measurements for each single room
and applied the transformations accordingly. As one can
deduce from table II, no systematic improvement occurs
nonetheless.

rooms.id. fpsl fps2 id ssd ap
235 fplu2 p3 2.54 2.37 2.28
235 fplu3 fp2 2.69 242 2.58
235 fp2u3 fpl 275 2.39 238
236 fplu2 fp3 2.15 235 2.51
236 fplu3 fp2 272 273 283
236 fp2u3 fpl 2.82 273 2.82
237 fplu2 p3 245 2.58 249
237 fplu3 p2 2.48 2.40 2.40
237 fp2u3 fpl 2.68 2.63 2.56
333 fplu2 p3 3.67 3.63 4.06
333 fplu3 p2 3.61 3.86 4.02
333 fp2u3 fpl 4.07 353 3.87
332 fplu2 fp3 2.56 2.73 2.40
332 fplu3 fp2 222 233 2.59
332 fp2u3 fpl 295 2.46 281
129 fplu2 p3 325 3.09 3.23
129 fplu3 fp2 3.09 3.05 297
129 fp2u3 fpl 3.15 351 3.20
130 fplu2 p3 3.20 3.76 347
130 fplu3 fp2 3.26 3.20 349
130 fp2u3 fpl 3.60 320 3.39
131 fplu2 p3 3.03 3.18 2.75
131 fplu3 fp2 3.12 3.07 3.13
131 fp2u3 fpl 3.17 2.98 3.26

TABLE II: Mean Distance Error per Room

It is only if one considers non-linear effects that SSD
transformations make a difference. During the collection
of measurements, by accident it was overlooked that the
radio of device 1 does not record 5GHz, which resulted in
artificially bad data quality. As this effect is non-linear
and restricted to a few not spatially evenly distributed
APs, applying SSD transformations indeed improved the
errors in this case significantly.

A similar calculation confirms the analysis of the
geometric features of differential RSS above. If one com-
putes the pairwise distances in feature space of projected
eigenvectors, the eigenvector to eigenvalue zero v,, =
(1,...,1) has almost no correlation between spatial
distances and distances in feature space, i.e. carries no

10Taking the second and the third handset as training and the first
as test data. The results for other combinations look similar.
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spatial information: corr (P, (ds), P+, (ds)) = 0.014,
whereas other eigenvectors have partially much higher
correlation (up to =~ 0.5). Henceforth, in the context of
machine learning the spatial information contained in this
particular dimension can be regarded as noise. This is not
surprising as a good coverage of WLAN access points
implies that every room has a similar average WLAN
field strength, henceforth similar values in v,, direction.
Thus, improving classification by taking differential RSS
cannot be expected in this case.

D. Classification Results

Our main interest is classification of rooms in order
to support context sensitive mobile application devel-
opment. To this end, the machine learning algorithms
were trained using the binary performance measure (see
equation 14):

o Two vs. One Validation: Algorithms are trained with

a combination of data from two of three mobiles
and validated against the third mobile. For example
data taken form the first and second mobile (fplu2)
is validated against the third mobile (fp3).

o All — Cross Validation: Algorithms are trained with

a combination of data from all three mobiles. Data
is randomly split into 10 folds to generate training
and validation data.

As remarked, the transformations can be applied be-
fore or after NA replacement. In general, applying trans-
formations before yields better results.

From the calculations we conclude the following find-
ings:

median(e) max(e) median(m) min(p) min(n) min(f)

SVM w/o PCA 0.005 0.005 NA 0.971 0.978 0.985

FNN w/o PCA 0.011 0.011 3.076 0.954 0.954 0.975
KNN w/o PCA 0.016 0.016 NA 0.921 0.916 0.949
Bayes with PCA 0.022 0.022 NA 0.906 0.889 0.931

TABLE III: Performance Two vs. One Validation

median(e) max(e) median(m) min(p) min(r) min(f)

SVM w/o PCA 0.008 0.016 NA 0.857 0.846 0917
FNN w/o PCA 0.004 0.024 2.773 0.909 0.846 0917
Bayes with PCA 0.020 0.047 NA 0.833 0.727 0.842

TABLE 1V: Performance All — Cross Validation

1) There is no significant difference in choosing
different kernels in the KNN methods. However,
optimising the kernel during training might lead to
overfitting.

2) KNN (FNN) performs quite well on the raw data
(i.e. only NA replacements and no transforma-
tion applied) despite the high dimensional feature
space. This is probably due to data being concen-
trated on a low dimensional sub manifold such that
arguments from e.g. [17] do not apply here.

3) SVM performs slightly better with carefully chosen
parameters for linear kernels. The parameters were
chosen by brute-force grid optimisation and are
typically between ¢ = 0.01 and ¢ = 10 for the
cost parameter ¢, ¥ = 10~* and v = 0.1 for the
gamma parameter -y with an average of 91 support
vectors (out of 850 observations).

4) The Naive Bayesian approach fails because the
assumptions of independence (and normal distri-
butions) are violated.

5) However, if a PCA is performed, Bayesian per-
forms quite well and is only slightly worse than
SVM and KNN.

6) None of the data transformation procedures (except
PCA for Bayes) improves results significantly and
consistently as can be seen from figure 3.

7) The binary classification ®,.> already contains
quite a bit of localisation information an yields a
maximum error of e = 0.09.

Figure 3) shows that indeed transformations do not in
general improve results. The best performing combina-
tions SVM and FNN resp. KNN w/o PCA and Bayes
with PCA are shown in tables III and IV.

As one can see, the leading algorithm SVM achieves
almost perfect classification with a F-Measure f = 0.985
if trained with two mobiles (see table III) and an F-
Measure of f = 0.967 if trained with all three mobiles'!
(see table IV). A typical — almost perfect — confusion
matrix for a trained SVM is shown in table V.

KNN (FNN) is almost as good and the difference
should not be regarded significant. For FNN we could
compute mean distance errors around r ~ 2.77 meters.

but using possibly less data in a particular room as data is randomly
split



129 130 131 235 236 237 332 333
129 48 1 0 ) 0 0 0 0
130 0 70 0 0 0 0 0 0
131 0 0 63 0 0 0 0 0
235 0 0 0 40 0 0 0 0
236 0 0 0 0 47 1 0 0
237 0 0 0 0 0 52 0 0
332 0 0 0 0 0 0 53 0
333 0 0 0 0 0 0 0 50

TABLE V: Example of a Confusion Matrix

This is close to best results published in the literature [1]
previously, if one considers that few outliers misclassified
can result in large error values for the mean distance
as our set-up is not a lab but a real building with
measurements taken from huge distances.

Regression: We also calculated some regression re-
sults using KNN and SVM. To this end, regression
were performed for each spatial coordinate z, y, and
z individually rather than for the Euclidean distance
directly!?. Although this is not optimal, with the existing
libraries it is easier to do. Not surprisingly, the regression
results using KNN typically have errors compatible with
the mean distance error calculated in the classification
results. The regression results for SVM are worse and
typically around 4.7 meters.

V. CONCLUSION

As we have shown, improving the results by pre-
processing the data does neither lead to better results nor
is necessary in an environment characterised by a high
density of access points. The well-known machine learn-
ing algorithms SVM and KNN perform on par with SVM
having a slight edge. Also a naive Bayesian approach
can be used with good results if a principal component
analysis is performed to transform the original problem
into one that better fits the simplifying assumptions of
the approach. The best algorithms to be used for an
(almost) unsupervised maintenance free approach in a
production environment still has to be determined. This
is target of current investigations. To this end, crowd-
sourcing will be applied to facilitate the data collection
process. This will include publishing open APIs both for
data generation and service usage to encourage third-
party application development on the mobile devices.

Another area of future research is combining the
WLAN fingerprinting approach with the rich information
from other sensors available in today’s smartphone such
as e.g. magnetic signatures, data taken from accelerom-
eters and gyroscopes and ambient light.
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